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INTRODUCTION 

In this report, we briefly describe the method used and numerical results obtained for 
diffraction from an absorbing gold metallic grating with a sinusoidal profile having period 
d = 2X and h = 0.4X, where h is the peak-to-valley grating height and X is the wavelength. 
This grating has been previously discussed by Depine (Reference 1), and we compare our 
results below with prior results presented in that paper. We have previously compared our 
results with Depine, as described in Elson and Tran (Reference 2), where an approach that 
has similarities to that presented here was used. Further, in this work we will also compare 
the Depine results with yet another method previously described by Elson and Tran 
(Reference 3) where this approach was also used to investigate surface wave dispersion on 
truncated photonic crystals (Reference 4). Finally, the method used in this work is identical 
to that given by Elson and Tran (Reference 5), which was previously used to calculate bulk 
dispersion of photonic media and transmission of finite thickness photonic media, 

Depine used a surface impedance boundary condition method. Elson and Tran 
(Reference 2) used a modal expansion method where Maxwell's equations were partially 
written in Fourier space and the resulting differential equations were solved as 
eigenfunction expansions. The approaches shown in References 3 and 4 are very similar to 
Reference 2 except that Maxwell's equations are approximated by finite difference 
equations and the solutions are obtained entirely in real-space. 

As also shown in Reference 5, the approach used in this work writes Maxwell's 
equations entirely in finite difference form and then numerically integrates through the 
profile region to obtain the solution. As in References 2 through 5, the R-matrix 
propagation algorithm is used because of inherent numerical stability. The calculation 
method is outlined below. 

CALCULATION OUTLINE 

We consider a sinusoidal grating, shown in Figure 1, which is invariant in the y 
direction and periodic in the x direction. The profile shape is z = f(x) and is confined to a 
finite thickness region in the z direction. The semi-infinite substrate and superstrate are 
homogeneous and the finite thickness region in between, which contains the grating 
profile, is described by a spatially variable permittivity e(x,z). The substrate (z < 0) has 
permittivity £sub and the superstrate (z > h) has permittivity (1,0). When 0 < z < h and 
0 < z < f(x), then e(x, z) = esub. When 0<z</zand/2>z> /(*), then e(x, z) = (1,0). 
To solve the diffraction problem, we must obtain the solutions to Maxwell's equations 
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FIGURE 1. Schematic of Sinusoidal Grating Profile and Associated Nomenclature. The 
finite difference increments are Ax and Az. A row of nx = 23 digitized x-points is shown 
explicitly at z = 0.022 micrometers. There are nz = 10 divisions of height h that yields 

for this example Az = 0.04A = 0.022 micrometers (A. = 0.55 micrometers). The shaded 
regions within the profile region show the actual profile shape based on the number of 
layers nz since the permittivity £(x,z) is independent of z within each Az layer. 

throughout the profile region. To do this, we digitize the x-coordinate over period d into 
nx discrete x values where each point is separated by Ax = d/nx. We also discretize the 
z-coordinate into n2 values over height h where each point is separated by Az = h/nz. 
Maxwell's equations are now approximated with finite difference expressions: 



NAWCWPNS TP 8334 

VxE(x,z) = i(o)/c)B(x,z): 

Ex(x,z + Az)-Ex(x,z) = iaß 

Az c   y 

ic     \By(x + Ax,z)-By(x,z) [ By(x-Ax,z)-By(x,z)\ 

a(Axy [      e(x + Ax/2,z) e(x-Ax/2,z) 

E(x,z + Az)-E(x,z)      ico _ . 
— = Bx(x,z + Az) 

Az c 
(lb) 

V x BQc, z) = -i((01 c)e(x)E( x, z): 

Bx(x,z + Az)-Bx(x,z) = _in£{xz)E,z) 

Az c 

+    fC 2{2£y(jc,z)-£y(j: + Ax,z)-£y(j;-Ax,z)} 
co(Ax) 

(lc) 

Az c 
(Id) 

In Equation \,x and z are each a discrete coordinate in the set of nx and nz points. These 
equations, which apply to the profile region, are valid from z = 0 to z = h. For numerical 
purposes, we truncate the problem so that the integer index nx ranges from -N —» N and 
this means that when all x-points are included, Equation 1 represents 4(2N+1) equations 
for a given discrete z-value. If we include all IN + 1 ^-points, Equation 1 may be arranged 
into a matrix equation having the form 

(    Ex(X,z)   ^ 
£v(X,z) 

£x(X,z + Az) 
£v(X,z + Az) 

= r. 

(   BX(X,Z)  ^ 
By(X,z) 

Bx(X,z + Az) 

By(X,z + Az) 

(2) 
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where r, and r2 are square matrices obtained from Equation 1 and X represents the set of 
nx discrete x-points. The columns containing the x and y-components of E and B are 
column vectors where each of the E and B components have 2N+\ elements and each 
element denotes a different ^-coordinate, 
column vectors with tilde notation as 

Defining a matrix r = r, r2 and abbreviating the 

E = and B = 
(BA 

UJ (3) 

yields Equation 2 as 

(   E(X,z)   ^ 

E(X,z + Az) 
= r(Az) 

(   B(X,z)   ^ 

B(X,z + Az) 
(4) 

This equation defines the r matrix for the layer bounded by z -» z + Az and needs to be 
calculated for each of the nz layers. In constructing the r matrix, certain terms of 
Equations la and lc require special attention. We note that for extreme x-values within a 
period, some field terms with arguments x ± Ax will fall outside the dimension of one 
period. These terms are "wrapped around" by using periodic boundary conditions (Bloch 
theorem). As described in detail in References 2 through 5, the fields at the z = 0 and 
z = h planes may be related by a global relationship as 

/
'E(X,0)

> 

E(X,/I) 
= R(h) 

'B(X,0)^ 

B(X,/0 
(5) 

where the square matrix R(/z) is obtained by a recursive algorithm involving the r matrices 
for each of the nzlayers. Equation 5 is described in real-space, and it is convenient at this 
time to transform to Fourier space by means of the square matrix F(K,X) where 

F(K,X) 
'E(X,0)^ 

E(X,h) 

( E(K,0) 

E(K,/z) 

^ 
(6) 

and similarly for the magnetic field. The vector K denotes the set of wave vectors in 
Fourier space analogous to the set X of ^-coordinates in real space. We apply this F 
matrix to Equation 5 that yields 
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'E(K,0)A 

E(K,Ä) 
= R(ä) 

^B(K,0)^ 

B(K,Ä) 
(7) 

where the matrix R(/i) = FR(/i)F_1. Since the z = 0 and z = h planes define the 
boundaries of the profile region adjoining the substrate and superstrate, respectively, we 
may match boundary conditions at these boundaries with the respective fields in the 
substrate and superstrate. At the substrate boundary, the boundary conditions may be 
written as E(K,0) = E'(K,0) and B(K,0) = B'(K,0) where the superscript t refers to the 
transmitted field region (substrate). At the superstrate boundary, the boundary conditions 
are E(K,h) = Einc(K,h) + Er(K,h) and B(K,A) = B'"c(K,/i) + Br(K,fc) where the 
superscripts inc and r refer to the incident field and reflected field region (superstrate), 
respectively. Using these boundary conditions in Equation 7 yields 

f E'(K,0) 

KE
inc(K,h) + Er(K,h) 

\   _    f 
= R(Ä) 

B'(K,0) 
Binc(K,h) + Br(K,h)) 

(8) 

While transformation to Fourier space is convenient for diffraction calculations, it is also 
important since, in the homogeneous superstrate and substrate regions, a relation between 
E and B can be written as 

B''(K,z) = Z'E'(K,z) 

where j = rort.   The form of the Z is given in References 2 through 4.    With this 
relationship, we may finally write the end result as 

'l-R„Z'     -R12Z
r YE'(K,0)' 

-R21Z'     I-R22Z
rXEr(K,/z) 

(0    R12YE'',C(K,/I) 

-I   R 22 J B''"c(K,/z) 
(9) 

where the square matrix R has been split into four quadrants each denoted by Rm„ with 
the appropriate m and n values. This matrix equation may be solved by standard means to 
calculate the transmitted E' and reflected Er fields. 
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NUMERICAL RESULTS 

We assume a plane wave of wavelength X = 0.55 micrometers is incident on the 
sinusoidal grating shown in Figure 1, where the incident polarization may be perpendicular 
or parallel to the grooves.   The grating profile is given by f(x) = h[l + cos(27Dc/d)]/2. 

The gold substrate material has permittivity esub = (-5.28, 1.48) at X = 0.55 micrometers. 
The numerical results are given for polarization parallel to the plane of incidence 
(perpendicular to the grooves). The numerical parameters used include nx = 83 jc-points 
which is the same as the number of diffracted orders and this yields Ax = 0.0241 A = 
0.0136 micrometers. We let kz = O.lAx which yields nz = 165. 

In Figure 2 we compare the present calculation method with the methods described 
in References 2 through 4. The input parameters nx and nz for the respective method are 

0.35 

0.05- 

i   i   i   i   i   i   i O I ' ' ' i | i i i ' | i i i i | i i i i | i i i i | i i i i | i i i i | i 

0      5      10     15    20    25    30    35    40    45 
Angle of Incidence, degrees 

FIGURE 2. Comparison of Diffraction Intensity Versus Angle of 
Incidence For Three Methods of Calculation. The solid line is for the 
present numerical integration method. The dotted line is for the yfc-space 
method described in Reference 2. The dash line is from the real-space 
method described in References 3 and 4. The curves to the left and right 
of the vertical dotted line are for the +1 and -3 order, respectively. It is 
seen that the three methods are in close agreement. 
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shown in References 2 through 4, but the grating design and material parameters are the 
same as used here. It is seen that the three methods agree quite well. 

Figure 3 compares the Depine (Reference 1) data with the present numerical integration 
method. There is considerable disagreement and the reason is not clear. In Depine's 
paper, he shows some numerical data that is based on a rigorous integral equation method 
and these data agree quite well with his approximate impedance boundary condition 
approach. 

0.35 

0 
i i i i i 

30 
i ' ' ' ' i ' 

10 20 30 40 50 
Angle of Incidence, degrees 

60 

FIGURE 3. Diffraction Intensity Versus Angle of Incidence. These data 
compare the Depine results (dotted line with solid circles) with the present 
numerical integration method (solid). The vertical dash line separates the +1 
and -3 diffracted orders. It is seen that there is moderate disagreement. 

CONCLUSIONS 

We have described a method of calculating grating diffraction that has the advantage of 
not requiring calculation of eigenvectors and eigenvalues. A disadvantage is that the 
numerical integration through the profile (z-direction) requires that the increment Az « X. 
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The method is versatile in that different grating profiles are simple to incorporate and 
extension to multilayered grating structures is possible in analogy with References 2 and 3. 

The numerical results for the numerical example chosen here show agreement of the 
present method with two prior methods. Differences between these three methods, which 
are evident in Figure 2, may be decreased by varying discretization (numerical) parameters 
which can affect accuracy. The present method, and hence all three methods, are in 
moderate disagreement with Depine (Figure 7 contained in Reference 1). The reason for 
disagreement is left to future study. 
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